(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(a, f(a, x)) → f(a, f(f(a, x), f(a, a)))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, f(a, z0)) → f(a, f(f(a, z0), f(a, a)))
Tuples:
F(a, f(a, z0)) → c(F(a, f(f(a, z0), f(a, a))), F(f(a, z0), f(a, a)), F(a, z0), F(a, a))
S tuples:
F(a, f(a, z0)) → c(F(a, f(f(a, z0), f(a, a))), F(f(a, z0), f(a, a)), F(a, z0), F(a, a))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
a,
f(
a,
z0)) →
c(
F(
a,
f(
f(
a,
z0),
f(
a,
a))),
F(
f(
a,
z0),
f(
a,
a)),
F(
a,
z0),
F(
a,
a)) by
F(a, f(a, x0)) → c(F(a, x0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, f(a, z0)) → f(a, f(f(a, z0), f(a, a)))
Tuples:
F(a, f(a, x0)) → c(F(a, x0))
S tuples:
F(a, f(a, x0)) → c(F(a, x0))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(a, f(a, x0)) → c(F(a, x0))
We considered the (Usable) Rules:none
And the Tuples:
F(a, f(a, x0)) → c(F(a, x0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [2]x2
POL(a) = [3]
POL(c(x1)) = x1
POL(f(x1, x2)) = [1] + [4]x2
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, f(a, z0)) → f(a, f(f(a, z0), f(a, a)))
Tuples:
F(a, f(a, x0)) → c(F(a, x0))
S tuples:none
K tuples:
F(a, f(a, x0)) → c(F(a, x0))
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))